Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-12x+17=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 17}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 17}}{2\times 2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 17}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-12\right)±\sqrt{144-136}}{2\times 2}
Multiply -8 times 17.
x=\frac{-\left(-12\right)±\sqrt{8}}{2\times 2}
Add 144 to -136.
x=\frac{-\left(-12\right)±2\sqrt{2}}{2\times 2}
Take the square root of 8.
x=\frac{12±2\sqrt{2}}{2\times 2}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{2}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{2}+12}{4}
Now solve the equation x=\frac{12±2\sqrt{2}}{4} when ± is plus. Add 12 to 2\sqrt{2}.
x=\frac{\sqrt{2}}{2}+3
Divide 12+2\sqrt{2} by 4.
x=\frac{12-2\sqrt{2}}{4}
Now solve the equation x=\frac{12±2\sqrt{2}}{4} when ± is minus. Subtract 2\sqrt{2} from 12.
x=-\frac{\sqrt{2}}{2}+3
Divide 12-2\sqrt{2} by 4.
2x^{2}-12x+17=2\left(x-\left(\frac{\sqrt{2}}{2}+3\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3+\frac{\sqrt{2}}{2} for x_{1} and 3-\frac{\sqrt{2}}{2} for x_{2}.