Factor
\left(x-20\right)\left(2x-75\right)
Evaluate
\left(x-20\right)\left(2x-75\right)
Graph
Share
Copied to clipboard
a+b=-115 ab=2\times 1500=3000
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+1500. To find a and b, set up a system to be solved.
-1,-3000 -2,-1500 -3,-1000 -4,-750 -5,-600 -6,-500 -8,-375 -10,-300 -12,-250 -15,-200 -20,-150 -24,-125 -25,-120 -30,-100 -40,-75 -50,-60
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 3000.
-1-3000=-3001 -2-1500=-1502 -3-1000=-1003 -4-750=-754 -5-600=-605 -6-500=-506 -8-375=-383 -10-300=-310 -12-250=-262 -15-200=-215 -20-150=-170 -24-125=-149 -25-120=-145 -30-100=-130 -40-75=-115 -50-60=-110
Calculate the sum for each pair.
a=-75 b=-40
The solution is the pair that gives sum -115.
\left(2x^{2}-75x\right)+\left(-40x+1500\right)
Rewrite 2x^{2}-115x+1500 as \left(2x^{2}-75x\right)+\left(-40x+1500\right).
x\left(2x-75\right)-20\left(2x-75\right)
Factor out x in the first and -20 in the second group.
\left(2x-75\right)\left(x-20\right)
Factor out common term 2x-75 by using distributive property.
2x^{2}-115x+1500=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-115\right)±\sqrt{\left(-115\right)^{2}-4\times 2\times 1500}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-115\right)±\sqrt{13225-4\times 2\times 1500}}{2\times 2}
Square -115.
x=\frac{-\left(-115\right)±\sqrt{13225-8\times 1500}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-115\right)±\sqrt{13225-12000}}{2\times 2}
Multiply -8 times 1500.
x=\frac{-\left(-115\right)±\sqrt{1225}}{2\times 2}
Add 13225 to -12000.
x=\frac{-\left(-115\right)±35}{2\times 2}
Take the square root of 1225.
x=\frac{115±35}{2\times 2}
The opposite of -115 is 115.
x=\frac{115±35}{4}
Multiply 2 times 2.
x=\frac{150}{4}
Now solve the equation x=\frac{115±35}{4} when ± is plus. Add 115 to 35.
x=\frac{75}{2}
Reduce the fraction \frac{150}{4} to lowest terms by extracting and canceling out 2.
x=\frac{80}{4}
Now solve the equation x=\frac{115±35}{4} when ± is minus. Subtract 35 from 115.
x=20
Divide 80 by 4.
2x^{2}-115x+1500=2\left(x-\frac{75}{2}\right)\left(x-20\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{75}{2} for x_{1} and 20 for x_{2}.
2x^{2}-115x+1500=2\times \frac{2x-75}{2}\left(x-20\right)
Subtract \frac{75}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}-115x+1500=\left(2x-75\right)\left(x-20\right)
Cancel out 2, the greatest common factor in 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}