Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-10x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 21}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 21}}{2\times 2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 21}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-10\right)±\sqrt{100-168}}{2\times 2}
Multiply -8 times 21.
x=\frac{-\left(-10\right)±\sqrt{-68}}{2\times 2}
Add 100 to -168.
x=\frac{-\left(-10\right)±2\sqrt{17}i}{2\times 2}
Take the square root of -68.
x=\frac{10±2\sqrt{17}i}{2\times 2}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{17}i}{4}
Multiply 2 times 2.
x=\frac{10+2\sqrt{17}i}{4}
Now solve the equation x=\frac{10±2\sqrt{17}i}{4} when ± is plus. Add 10 to 2i\sqrt{17}.
x=\frac{5+\sqrt{17}i}{2}
Divide 10+2i\sqrt{17} by 4.
x=\frac{-2\sqrt{17}i+10}{4}
Now solve the equation x=\frac{10±2\sqrt{17}i}{4} when ± is minus. Subtract 2i\sqrt{17} from 10.
x=\frac{-\sqrt{17}i+5}{2}
Divide 10-2i\sqrt{17} by 4.
x=\frac{5+\sqrt{17}i}{2} x=\frac{-\sqrt{17}i+5}{2}
The equation is now solved.
2x^{2}-10x+21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-10x+21-21=-21
Subtract 21 from both sides of the equation.
2x^{2}-10x=-21
Subtracting 21 from itself leaves 0.
\frac{2x^{2}-10x}{2}=-\frac{21}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{21}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-5x=-\frac{21}{2}
Divide -10 by 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{21}{2}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-\frac{21}{2}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{17}{4}
Add -\frac{21}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=-\frac{17}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{17}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{17}i}{2} x-\frac{5}{2}=-\frac{\sqrt{17}i}{2}
Simplify.
x=\frac{5+\sqrt{17}i}{2} x=\frac{-\sqrt{17}i+5}{2}
Add \frac{5}{2} to both sides of the equation.