Solve for x (complex solution)
x=\frac{9+i\sqrt{119}}{20}\approx 0.45+0.545435606i
x=\frac{-i\sqrt{119}+9}{20}\approx 0.45-0.545435606i
Graph
Share
Copied to clipboard
2x^{2}-1.8x=-1
Subtract 1.8x from both sides.
2x^{2}-1.8x+1=0
Add 1 to both sides.
x=\frac{-\left(-1.8\right)±\sqrt{\left(-1.8\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1.8 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.8\right)±\sqrt{3.24-4\times 2}}{2\times 2}
Square -1.8 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.8\right)±\sqrt{3.24-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1.8\right)±\sqrt{-4.76}}{2\times 2}
Add 3.24 to -8.
x=\frac{-\left(-1.8\right)±\frac{\sqrt{119}i}{5}}{2\times 2}
Take the square root of -4.76.
x=\frac{1.8±\frac{\sqrt{119}i}{5}}{2\times 2}
The opposite of -1.8 is 1.8.
x=\frac{1.8±\frac{\sqrt{119}i}{5}}{4}
Multiply 2 times 2.
x=\frac{9+\sqrt{119}i}{4\times 5}
Now solve the equation x=\frac{1.8±\frac{\sqrt{119}i}{5}}{4} when ± is plus. Add 1.8 to \frac{i\sqrt{119}}{5}.
x=\frac{9+\sqrt{119}i}{20}
Divide \frac{9+i\sqrt{119}}{5} by 4.
x=\frac{-\sqrt{119}i+9}{4\times 5}
Now solve the equation x=\frac{1.8±\frac{\sqrt{119}i}{5}}{4} when ± is minus. Subtract \frac{i\sqrt{119}}{5} from 1.8.
x=\frac{-\sqrt{119}i+9}{20}
Divide \frac{9-i\sqrt{119}}{5} by 4.
x=\frac{9+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+9}{20}
The equation is now solved.
2x^{2}-1.8x=-1
Subtract 1.8x from both sides.
\frac{2x^{2}-1.8x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{1.8}{2}\right)x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-0.9x=-\frac{1}{2}
Divide -1.8 by 2.
x^{2}-0.9x+\left(-0.45\right)^{2}=-\frac{1}{2}+\left(-0.45\right)^{2}
Divide -0.9, the coefficient of the x term, by 2 to get -0.45. Then add the square of -0.45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.9x+0.2025=-\frac{1}{2}+0.2025
Square -0.45 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.9x+0.2025=-\frac{119}{400}
Add -\frac{1}{2} to 0.2025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.45\right)^{2}=-\frac{119}{400}
Factor x^{2}-0.9x+0.2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.45\right)^{2}}=\sqrt{-\frac{119}{400}}
Take the square root of both sides of the equation.
x-0.45=\frac{\sqrt{119}i}{20} x-0.45=-\frac{\sqrt{119}i}{20}
Simplify.
x=\frac{9+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+9}{20}
Add 0.45 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}