Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=\left(18+6\right)^{2}
Add 10 and 8 to get 18.
2x^{2}=24^{2}
Add 18 and 6 to get 24.
2x^{2}=576
Calculate 24 to the power of 2 and get 576.
x^{2}=\frac{576}{2}
Divide both sides by 2.
x^{2}=288
Divide 576 by 2 to get 288.
x=12\sqrt{2} x=-12\sqrt{2}
Take the square root of both sides of the equation.
2x^{2}=\left(18+6\right)^{2}
Add 10 and 8 to get 18.
2x^{2}=24^{2}
Add 18 and 6 to get 24.
2x^{2}=576
Calculate 24 to the power of 2 and get 576.
2x^{2}-576=0
Subtract 576 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-576\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-576\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-576\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{4608}}{2\times 2}
Multiply -8 times -576.
x=\frac{0±48\sqrt{2}}{2\times 2}
Take the square root of 4608.
x=\frac{0±48\sqrt{2}}{4}
Multiply 2 times 2.
x=12\sqrt{2}
Now solve the equation x=\frac{0±48\sqrt{2}}{4} when ± is plus.
x=-12\sqrt{2}
Now solve the equation x=\frac{0±48\sqrt{2}}{4} when ± is minus.
x=12\sqrt{2} x=-12\sqrt{2}
The equation is now solved.