Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=9 ab=2\left(-35\right)=-70
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-35. To find a and b, set up a system to be solved.
-1,70 -2,35 -5,14 -7,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -70.
-1+70=69 -2+35=33 -5+14=9 -7+10=3
Calculate the sum for each pair.
a=-5 b=14
The solution is the pair that gives sum 9.
\left(2x^{2}-5x\right)+\left(14x-35\right)
Rewrite 2x^{2}+9x-35 as \left(2x^{2}-5x\right)+\left(14x-35\right).
x\left(2x-5\right)+7\left(2x-5\right)
Factor out x in the first and 7 in the second group.
\left(2x-5\right)\left(x+7\right)
Factor out common term 2x-5 by using distributive property.
2x^{2}+9x-35=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-35\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\times 2\left(-35\right)}}{2\times 2}
Square 9.
x=\frac{-9±\sqrt{81-8\left(-35\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-9±\sqrt{81+280}}{2\times 2}
Multiply -8 times -35.
x=\frac{-9±\sqrt{361}}{2\times 2}
Add 81 to 280.
x=\frac{-9±19}{2\times 2}
Take the square root of 361.
x=\frac{-9±19}{4}
Multiply 2 times 2.
x=\frac{10}{4}
Now solve the equation x=\frac{-9±19}{4} when ± is plus. Add -9 to 19.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{28}{4}
Now solve the equation x=\frac{-9±19}{4} when ± is minus. Subtract 19 from -9.
x=-7
Divide -28 by 4.
2x^{2}+9x-35=2\left(x-\frac{5}{2}\right)\left(x-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -7 for x_{2}.
2x^{2}+9x-35=2\left(x-\frac{5}{2}\right)\left(x+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+9x-35=2\times \frac{2x-5}{2}\left(x+7\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+9x-35=\left(2x-5\right)\left(x+7\right)
Cancel out 2, the greatest common factor in 2 and 2.