Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+9x-78=-3x
Subtract 78 from both sides.
2x^{2}+9x-78+3x=0
Add 3x to both sides.
2x^{2}+12x-78=0
Combine 9x and 3x to get 12x.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-78\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-78\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-78\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+624}}{2\times 2}
Multiply -8 times -78.
x=\frac{-12±\sqrt{768}}{2\times 2}
Add 144 to 624.
x=\frac{-12±16\sqrt{3}}{2\times 2}
Take the square root of 768.
x=\frac{-12±16\sqrt{3}}{4}
Multiply 2 times 2.
x=\frac{16\sqrt{3}-12}{4}
Now solve the equation x=\frac{-12±16\sqrt{3}}{4} when ± is plus. Add -12 to 16\sqrt{3}.
x=4\sqrt{3}-3
Divide -12+16\sqrt{3} by 4.
x=\frac{-16\sqrt{3}-12}{4}
Now solve the equation x=\frac{-12±16\sqrt{3}}{4} when ± is minus. Subtract 16\sqrt{3} from -12.
x=-4\sqrt{3}-3
Divide -12-16\sqrt{3} by 4.
x=4\sqrt{3}-3 x=-4\sqrt{3}-3
The equation is now solved.
2x^{2}+9x+3x=78
Add 3x to both sides.
2x^{2}+12x=78
Combine 9x and 3x to get 12x.
\frac{2x^{2}+12x}{2}=\frac{78}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{78}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{78}{2}
Divide 12 by 2.
x^{2}+6x=39
Divide 78 by 2.
x^{2}+6x+3^{2}=39+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=39+9
Square 3.
x^{2}+6x+9=48
Add 39 to 9.
\left(x+3\right)^{2}=48
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{48}
Take the square root of both sides of the equation.
x+3=4\sqrt{3} x+3=-4\sqrt{3}
Simplify.
x=4\sqrt{3}-3 x=-4\sqrt{3}-3
Subtract 3 from both sides of the equation.