Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+96x+106=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-96±\sqrt{96^{2}-4\times 2\times 106}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-96±\sqrt{9216-4\times 2\times 106}}{2\times 2}
Square 96.
x=\frac{-96±\sqrt{9216-8\times 106}}{2\times 2}
Multiply -4 times 2.
x=\frac{-96±\sqrt{9216-848}}{2\times 2}
Multiply -8 times 106.
x=\frac{-96±\sqrt{8368}}{2\times 2}
Add 9216 to -848.
x=\frac{-96±4\sqrt{523}}{2\times 2}
Take the square root of 8368.
x=\frac{-96±4\sqrt{523}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{523}-96}{4}
Now solve the equation x=\frac{-96±4\sqrt{523}}{4} when ± is plus. Add -96 to 4\sqrt{523}.
x=\sqrt{523}-24
Divide -96+4\sqrt{523} by 4.
x=\frac{-4\sqrt{523}-96}{4}
Now solve the equation x=\frac{-96±4\sqrt{523}}{4} when ± is minus. Subtract 4\sqrt{523} from -96.
x=-\sqrt{523}-24
Divide -96-4\sqrt{523} by 4.
2x^{2}+96x+106=2\left(x-\left(\sqrt{523}-24\right)\right)\left(x-\left(-\sqrt{523}-24\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -24+\sqrt{523} for x_{1} and -24-\sqrt{523} for x_{2}.