Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+8x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-9\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 2\left(-9\right)}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\left(-9\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64+72}}{2\times 2}
Multiply -8 times -9.
x=\frac{-8±\sqrt{136}}{2\times 2}
Add 64 to 72.
x=\frac{-8±2\sqrt{34}}{2\times 2}
Take the square root of 136.
x=\frac{-8±2\sqrt{34}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{34}-8}{4}
Now solve the equation x=\frac{-8±2\sqrt{34}}{4} when ± is plus. Add -8 to 2\sqrt{34}.
x=\frac{\sqrt{34}}{2}-2
Divide -8+2\sqrt{34} by 4.
x=\frac{-2\sqrt{34}-8}{4}
Now solve the equation x=\frac{-8±2\sqrt{34}}{4} when ± is minus. Subtract 2\sqrt{34} from -8.
x=-\frac{\sqrt{34}}{2}-2
Divide -8-2\sqrt{34} by 4.
2x^{2}+8x-9=2\left(x-\left(\frac{\sqrt{34}}{2}-2\right)\right)\left(x-\left(-\frac{\sqrt{34}}{2}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2+\frac{\sqrt{34}}{2} for x_{1} and -2-\frac{\sqrt{34}}{2} for x_{2}.