Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+8x-54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-54\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 2\left(-54\right)}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\left(-54\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64+432}}{2\times 2}
Multiply -8 times -54.
x=\frac{-8±\sqrt{496}}{2\times 2}
Add 64 to 432.
x=\frac{-8±4\sqrt{31}}{2\times 2}
Take the square root of 496.
x=\frac{-8±4\sqrt{31}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{31}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{31}}{4} when ± is plus. Add -8 to 4\sqrt{31}.
x=\sqrt{31}-2
Divide -8+4\sqrt{31} by 4.
x=\frac{-4\sqrt{31}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{31}}{4} when ± is minus. Subtract 4\sqrt{31} from -8.
x=-\sqrt{31}-2
Divide -8-4\sqrt{31} by 4.
2x^{2}+8x-54=2\left(x-\left(\sqrt{31}-2\right)\right)\left(x-\left(-\sqrt{31}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2+\sqrt{31} for x_{1} and -2-\sqrt{31} for x_{2}.