Solve for x (complex solution)
x=-2+\sqrt{3}i\approx -2+1.732050808i
x=-\sqrt{3}i-2\approx -2-1.732050808i
Graph
Share
Copied to clipboard
2x^{2}+8x+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 14}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 14}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\times 14}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64-112}}{2\times 2}
Multiply -8 times 14.
x=\frac{-8±\sqrt{-48}}{2\times 2}
Add 64 to -112.
x=\frac{-8±4\sqrt{3}i}{2\times 2}
Take the square root of -48.
x=\frac{-8±4\sqrt{3}i}{4}
Multiply 2 times 2.
x=\frac{-8+4\sqrt{3}i}{4}
Now solve the equation x=\frac{-8±4\sqrt{3}i}{4} when ± is plus. Add -8 to 4i\sqrt{3}.
x=-2+\sqrt{3}i
Divide -8+4i\sqrt{3} by 4.
x=\frac{-4\sqrt{3}i-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{3}i}{4} when ± is minus. Subtract 4i\sqrt{3} from -8.
x=-\sqrt{3}i-2
Divide -8-4i\sqrt{3} by 4.
x=-2+\sqrt{3}i x=-\sqrt{3}i-2
The equation is now solved.
2x^{2}+8x+14=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+8x+14-14=-14
Subtract 14 from both sides of the equation.
2x^{2}+8x=-14
Subtracting 14 from itself leaves 0.
\frac{2x^{2}+8x}{2}=-\frac{14}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=-\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=-\frac{14}{2}
Divide 8 by 2.
x^{2}+4x=-7
Divide -14 by 2.
x^{2}+4x+2^{2}=-7+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-7+4
Square 2.
x^{2}+4x+4=-3
Add -7 to 4.
\left(x+2\right)^{2}=-3
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
x+2=\sqrt{3}i x+2=-\sqrt{3}i
Simplify.
x=-2+\sqrt{3}i x=-\sqrt{3}i-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}