Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=7 ab=2\left(-15\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(2x^{2}-3x\right)+\left(10x-15\right)
Rewrite 2x^{2}+7x-15 as \left(2x^{2}-3x\right)+\left(10x-15\right).
x\left(2x-3\right)+5\left(2x-3\right)
Factor out x in the first and 5 in the second group.
\left(2x-3\right)\left(x+5\right)
Factor out common term 2x-3 by using distributive property.
2x^{2}+7x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
Multiply -8 times -15.
x=\frac{-7±\sqrt{169}}{2\times 2}
Add 49 to 120.
x=\frac{-7±13}{2\times 2}
Take the square root of 169.
x=\frac{-7±13}{4}
Multiply 2 times 2.
x=\frac{6}{4}
Now solve the equation x=\frac{-7±13}{4} when ± is plus. Add -7 to 13.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{20}{4}
Now solve the equation x=\frac{-7±13}{4} when ± is minus. Subtract 13 from -7.
x=-5
Divide -20 by 4.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -5 for x_{2}.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+7x-15=2\times \frac{2x-3}{2}\left(x+5\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+7x-15=\left(2x-3\right)\left(x+5\right)
Cancel out 2, the greatest common factor in 2 and 2.