Solve for x (complex solution)
x=\frac{-7+\sqrt{15}i}{4}\approx -1.75+0.968245837i
x=\frac{-\sqrt{15}i-7}{4}\approx -1.75-0.968245837i
Graph
Share
Copied to clipboard
2x^{2}+7x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 8}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-7±\sqrt{-15}}{2\times 2}
Add 49 to -64.
x=\frac{-7±\sqrt{15}i}{2\times 2}
Take the square root of -15.
x=\frac{-7±\sqrt{15}i}{4}
Multiply 2 times 2.
x=\frac{-7+\sqrt{15}i}{4}
Now solve the equation x=\frac{-7±\sqrt{15}i}{4} when ± is plus. Add -7 to i\sqrt{15}.
x=\frac{-\sqrt{15}i-7}{4}
Now solve the equation x=\frac{-7±\sqrt{15}i}{4} when ± is minus. Subtract i\sqrt{15} from -7.
x=\frac{-7+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i-7}{4}
The equation is now solved.
2x^{2}+7x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+7x+8-8=-8
Subtract 8 from both sides of the equation.
2x^{2}+7x=-8
Subtracting 8 from itself leaves 0.
\frac{2x^{2}+7x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x=-4
Divide -8 by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-4+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-4+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{15}{16}
Add -4 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=-\frac{15}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{15}i}{4} x+\frac{7}{4}=-\frac{\sqrt{15}i}{4}
Simplify.
x=\frac{-7+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i-7}{4}
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}