Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+6x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-10\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 2\left(-10\right)}}{2\times 2}
Square 6.
x=\frac{-6±\sqrt{36-8\left(-10\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-6±\sqrt{36+80}}{2\times 2}
Multiply -8 times -10.
x=\frac{-6±\sqrt{116}}{2\times 2}
Add 36 to 80.
x=\frac{-6±2\sqrt{29}}{2\times 2}
Take the square root of 116.
x=\frac{-6±2\sqrt{29}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{29}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{29}}{4} when ± is plus. Add -6 to 2\sqrt{29}.
x=\frac{\sqrt{29}-3}{2}
Divide -6+2\sqrt{29} by 4.
x=\frac{-2\sqrt{29}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{29}}{4} when ± is minus. Subtract 2\sqrt{29} from -6.
x=\frac{-\sqrt{29}-3}{2}
Divide -6-2\sqrt{29} by 4.
2x^{2}+6x-10=2\left(x-\frac{\sqrt{29}-3}{2}\right)\left(x-\frac{-\sqrt{29}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{29}}{2} for x_{1} and \frac{-3-\sqrt{29}}{2} for x_{2}.