Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+7x+60=0
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
x=\frac{-7±\sqrt{7^{2}-4\times 8\times 60}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 7 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 8\times 60}}{2\times 8}
Square 7.
x=\frac{-7±\sqrt{49-32\times 60}}{2\times 8}
Multiply -4 times 8.
x=\frac{-7±\sqrt{49-1920}}{2\times 8}
Multiply -32 times 60.
x=\frac{-7±\sqrt{-1871}}{2\times 8}
Add 49 to -1920.
x=\frac{-7±\sqrt{1871}i}{2\times 8}
Take the square root of -1871.
x=\frac{-7±\sqrt{1871}i}{16}
Multiply 2 times 8.
x=\frac{-7+\sqrt{1871}i}{16}
Now solve the equation x=\frac{-7±\sqrt{1871}i}{16} when ± is plus. Add -7 to i\sqrt{1871}.
x=\frac{-\sqrt{1871}i-7}{16}
Now solve the equation x=\frac{-7±\sqrt{1871}i}{16} when ± is minus. Subtract i\sqrt{1871} from -7.
x=\frac{-7+\sqrt{1871}i}{16} x=\frac{-\sqrt{1871}i-7}{16}
The equation is now solved.
8x^{2}+7x+60=0
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
8x^{2}+7x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
\frac{8x^{2}+7x}{8}=-\frac{60}{8}
Divide both sides by 8.
x^{2}+\frac{7}{8}x=-\frac{60}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{7}{8}x=-\frac{15}{2}
Reduce the fraction \frac{-60}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{8}x+\left(\frac{7}{16}\right)^{2}=-\frac{15}{2}+\left(\frac{7}{16}\right)^{2}
Divide \frac{7}{8}, the coefficient of the x term, by 2 to get \frac{7}{16}. Then add the square of \frac{7}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{8}x+\frac{49}{256}=-\frac{15}{2}+\frac{49}{256}
Square \frac{7}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{8}x+\frac{49}{256}=-\frac{1871}{256}
Add -\frac{15}{2} to \frac{49}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{16}\right)^{2}=-\frac{1871}{256}
Factor x^{2}+\frac{7}{8}x+\frac{49}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{16}\right)^{2}}=\sqrt{-\frac{1871}{256}}
Take the square root of both sides of the equation.
x+\frac{7}{16}=\frac{\sqrt{1871}i}{16} x+\frac{7}{16}=-\frac{\sqrt{1871}i}{16}
Simplify.
x=\frac{-7+\sqrt{1871}i}{16} x=\frac{-\sqrt{1871}i-7}{16}
Subtract \frac{7}{16} from both sides of the equation.