Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=1
Graph
Share
Copied to clipboard
a+b=5 ab=2\left(-7\right)=-14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=-2 b=7
The solution is the pair that gives sum 5.
\left(2x^{2}-2x\right)+\left(7x-7\right)
Rewrite 2x^{2}+5x-7 as \left(2x^{2}-2x\right)+\left(7x-7\right).
2x\left(x-1\right)+7\left(x-1\right)
Factor out 2x in the first and 7 in the second group.
\left(x-1\right)\left(2x+7\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{7}{2}
To find equation solutions, solve x-1=0 and 2x+7=0.
2x^{2}+5x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-7\right)}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25+56}}{2\times 2}
Multiply -8 times -7.
x=\frac{-5±\sqrt{81}}{2\times 2}
Add 25 to 56.
x=\frac{-5±9}{2\times 2}
Take the square root of 81.
x=\frac{-5±9}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{-5±9}{4} when ± is plus. Add -5 to 9.
x=1
Divide 4 by 4.
x=-\frac{14}{4}
Now solve the equation x=\frac{-5±9}{4} when ± is minus. Subtract 9 from -5.
x=-\frac{7}{2}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{7}{2}
The equation is now solved.
2x^{2}+5x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+5x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
2x^{2}+5x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
2x^{2}+5x=7
Subtract -7 from 0.
\frac{2x^{2}+5x}{2}=\frac{7}{2}
Divide both sides by 2.
x^{2}+\frac{5}{2}x=\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{7}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{7}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{81}{16}
Add \frac{7}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{9}{4} x+\frac{5}{4}=-\frac{9}{4}
Simplify.
x=1 x=-\frac{7}{2}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}