Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+5x+29=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 29}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\times 29}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\times 29}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25-232}}{2\times 2}
Multiply -8 times 29.
x=\frac{-5±\sqrt{-207}}{2\times 2}
Add 25 to -232.
x=\frac{-5±3\sqrt{23}i}{2\times 2}
Take the square root of -207.
x=\frac{-5±3\sqrt{23}i}{4}
Multiply 2 times 2.
x=\frac{-5+3\sqrt{23}i}{4}
Now solve the equation x=\frac{-5±3\sqrt{23}i}{4} when ± is plus. Add -5 to 3i\sqrt{23}.
x=\frac{-3\sqrt{23}i-5}{4}
Now solve the equation x=\frac{-5±3\sqrt{23}i}{4} when ± is minus. Subtract 3i\sqrt{23} from -5.
x=\frac{-5+3\sqrt{23}i}{4} x=\frac{-3\sqrt{23}i-5}{4}
The equation is now solved.
2x^{2}+5x+29=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+5x+29-29=-29
Subtract 29 from both sides of the equation.
2x^{2}+5x=-29
Subtracting 29 from itself leaves 0.
\frac{2x^{2}+5x}{2}=-\frac{29}{2}
Divide both sides by 2.
x^{2}+\frac{5}{2}x=-\frac{29}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{29}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{29}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{207}{16}
Add -\frac{29}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=-\frac{207}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{207}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{3\sqrt{23}i}{4} x+\frac{5}{4}=-\frac{3\sqrt{23}i}{4}
Simplify.
x=\frac{-5+3\sqrt{23}i}{4} x=\frac{-3\sqrt{23}i-5}{4}
Subtract \frac{5}{4} from both sides of the equation.