Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+2x-15\right)
Factor out 2.
a+b=2 ab=1\left(-15\right)=-15
Consider x^{2}+2x-15. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Rewrite x^{2}+2x-15 as \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Factor out x in the first and 5 in the second group.
\left(x-3\right)\left(x+5\right)
Factor out common term x-3 by using distributive property.
2\left(x-3\right)\left(x+5\right)
Rewrite the complete factored expression.
2x^{2}+4x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-30\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 2\left(-30\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-30\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+240}}{2\times 2}
Multiply -8 times -30.
x=\frac{-4±\sqrt{256}}{2\times 2}
Add 16 to 240.
x=\frac{-4±16}{2\times 2}
Take the square root of 256.
x=\frac{-4±16}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{-4±16}{4} when ± is plus. Add -4 to 16.
x=3
Divide 12 by 4.
x=-\frac{20}{4}
Now solve the equation x=\frac{-4±16}{4} when ± is minus. Subtract 16 from -4.
x=-5
Divide -20 by 4.
2x^{2}+4x-30=2\left(x-3\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -5 for x_{2}.
2x^{2}+4x-30=2\left(x-3\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.