Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+4x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\times 5}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-4±\sqrt{-24}}{2\times 2}
Add 16 to -40.
x=\frac{-4±2\sqrt{6}i}{2\times 2}
Take the square root of -24.
x=\frac{-4±2\sqrt{6}i}{4}
Multiply 2 times 2.
x=\frac{-4+2\sqrt{6}i}{4}
Now solve the equation x=\frac{-4±2\sqrt{6}i}{4} when ± is plus. Add -4 to 2i\sqrt{6}.
x=\frac{\sqrt{6}i}{2}-1
Divide -4+2i\sqrt{6} by 4.
x=\frac{-2\sqrt{6}i-4}{4}
Now solve the equation x=\frac{-4±2\sqrt{6}i}{4} when ± is minus. Subtract 2i\sqrt{6} from -4.
x=-\frac{\sqrt{6}i}{2}-1
Divide -4-2i\sqrt{6} by 4.
x=\frac{\sqrt{6}i}{2}-1 x=-\frac{\sqrt{6}i}{2}-1
The equation is now solved.
2x^{2}+4x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+4x+5-5=-5
Subtract 5 from both sides of the equation.
2x^{2}+4x=-5
Subtracting 5 from itself leaves 0.
\frac{2x^{2}+4x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=-\frac{5}{2}
Divide 4 by 2.
x^{2}+2x+1^{2}=-\frac{5}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{5}{2}+1
Square 1.
x^{2}+2x+1=-\frac{3}{2}
Add -\frac{5}{2} to 1.
\left(x+1\right)^{2}=-\frac{3}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{3}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{6}i}{2} x+1=-\frac{\sqrt{6}i}{2}
Simplify.
x=\frac{\sqrt{6}i}{2}-1 x=-\frac{\sqrt{6}i}{2}-1
Subtract 1 from both sides of the equation.