Solve for x
x=-800
x=600
Graph
Share
Copied to clipboard
x^{2}+200x-480000=0
Divide both sides by 2.
a+b=200 ab=1\left(-480000\right)=-480000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-480000. To find a and b, set up a system to be solved.
-1,480000 -2,240000 -3,160000 -4,120000 -5,96000 -6,80000 -8,60000 -10,48000 -12,40000 -15,32000 -16,30000 -20,24000 -24,20000 -25,19200 -30,16000 -32,15000 -40,12000 -48,10000 -50,9600 -60,8000 -64,7500 -75,6400 -80,6000 -96,5000 -100,4800 -120,4000 -125,3840 -128,3750 -150,3200 -160,3000 -192,2500 -200,2400 -240,2000 -250,1920 -256,1875 -300,1600 -320,1500 -375,1280 -384,1250 -400,1200 -480,1000 -500,960 -600,800 -625,768 -640,750
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -480000.
-1+480000=479999 -2+240000=239998 -3+160000=159997 -4+120000=119996 -5+96000=95995 -6+80000=79994 -8+60000=59992 -10+48000=47990 -12+40000=39988 -15+32000=31985 -16+30000=29984 -20+24000=23980 -24+20000=19976 -25+19200=19175 -30+16000=15970 -32+15000=14968 -40+12000=11960 -48+10000=9952 -50+9600=9550 -60+8000=7940 -64+7500=7436 -75+6400=6325 -80+6000=5920 -96+5000=4904 -100+4800=4700 -120+4000=3880 -125+3840=3715 -128+3750=3622 -150+3200=3050 -160+3000=2840 -192+2500=2308 -200+2400=2200 -240+2000=1760 -250+1920=1670 -256+1875=1619 -300+1600=1300 -320+1500=1180 -375+1280=905 -384+1250=866 -400+1200=800 -480+1000=520 -500+960=460 -600+800=200 -625+768=143 -640+750=110
Calculate the sum for each pair.
a=-600 b=800
The solution is the pair that gives sum 200.
\left(x^{2}-600x\right)+\left(800x-480000\right)
Rewrite x^{2}+200x-480000 as \left(x^{2}-600x\right)+\left(800x-480000\right).
x\left(x-600\right)+800\left(x-600\right)
Factor out x in the first and 800 in the second group.
\left(x-600\right)\left(x+800\right)
Factor out common term x-600 by using distributive property.
x=600 x=-800
To find equation solutions, solve x-600=0 and x+800=0.
2x^{2}+400x-960000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-400±\sqrt{400^{2}-4\times 2\left(-960000\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 400 for b, and -960000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\times 2\left(-960000\right)}}{2\times 2}
Square 400.
x=\frac{-400±\sqrt{160000-8\left(-960000\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-400±\sqrt{160000+7680000}}{2\times 2}
Multiply -8 times -960000.
x=\frac{-400±\sqrt{7840000}}{2\times 2}
Add 160000 to 7680000.
x=\frac{-400±2800}{2\times 2}
Take the square root of 7840000.
x=\frac{-400±2800}{4}
Multiply 2 times 2.
x=\frac{2400}{4}
Now solve the equation x=\frac{-400±2800}{4} when ± is plus. Add -400 to 2800.
x=600
Divide 2400 by 4.
x=-\frac{3200}{4}
Now solve the equation x=\frac{-400±2800}{4} when ± is minus. Subtract 2800 from -400.
x=-800
Divide -3200 by 4.
x=600 x=-800
The equation is now solved.
2x^{2}+400x-960000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+400x-960000-\left(-960000\right)=-\left(-960000\right)
Add 960000 to both sides of the equation.
2x^{2}+400x=-\left(-960000\right)
Subtracting -960000 from itself leaves 0.
2x^{2}+400x=960000
Subtract -960000 from 0.
\frac{2x^{2}+400x}{2}=\frac{960000}{2}
Divide both sides by 2.
x^{2}+\frac{400}{2}x=\frac{960000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+200x=\frac{960000}{2}
Divide 400 by 2.
x^{2}+200x=480000
Divide 960000 by 2.
x^{2}+200x+100^{2}=480000+100^{2}
Divide 200, the coefficient of the x term, by 2 to get 100. Then add the square of 100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+200x+10000=480000+10000
Square 100.
x^{2}+200x+10000=490000
Add 480000 to 10000.
\left(x+100\right)^{2}=490000
Factor x^{2}+200x+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+100\right)^{2}}=\sqrt{490000}
Take the square root of both sides of the equation.
x+100=700 x+100=-700
Simplify.
x=600 x=-800
Subtract 100 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}