Factor
\left(x-8\right)\left(2x+19\right)
Evaluate
\left(x-8\right)\left(2x+19\right)
Graph
Share
Copied to clipboard
a+b=3 ab=2\left(-152\right)=-304
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-152. To find a and b, set up a system to be solved.
-1,304 -2,152 -4,76 -8,38 -16,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -304.
-1+304=303 -2+152=150 -4+76=72 -8+38=30 -16+19=3
Calculate the sum for each pair.
a=-16 b=19
The solution is the pair that gives sum 3.
\left(2x^{2}-16x\right)+\left(19x-152\right)
Rewrite 2x^{2}+3x-152 as \left(2x^{2}-16x\right)+\left(19x-152\right).
2x\left(x-8\right)+19\left(x-8\right)
Factor out 2x in the first and 19 in the second group.
\left(x-8\right)\left(2x+19\right)
Factor out common term x-8 by using distributive property.
2x^{2}+3x-152=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-152\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 2\left(-152\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-152\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+1216}}{2\times 2}
Multiply -8 times -152.
x=\frac{-3±\sqrt{1225}}{2\times 2}
Add 9 to 1216.
x=\frac{-3±35}{2\times 2}
Take the square root of 1225.
x=\frac{-3±35}{4}
Multiply 2 times 2.
x=\frac{32}{4}
Now solve the equation x=\frac{-3±35}{4} when ± is plus. Add -3 to 35.
x=8
Divide 32 by 4.
x=-\frac{38}{4}
Now solve the equation x=\frac{-3±35}{4} when ± is minus. Subtract 35 from -3.
x=-\frac{19}{2}
Reduce the fraction \frac{-38}{4} to lowest terms by extracting and canceling out 2.
2x^{2}+3x-152=2\left(x-8\right)\left(x-\left(-\frac{19}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and -\frac{19}{2} for x_{2}.
2x^{2}+3x-152=2\left(x-8\right)\left(x+\frac{19}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+3x-152=2\left(x-8\right)\times \frac{2x+19}{2}
Add \frac{19}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+3x-152=\left(x-8\right)\left(2x+19\right)
Cancel out 2, the greatest common factor in 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}