Solve for x
x = \frac{\sqrt{2193} - 3}{4} \approx 10.957369474
x=\frac{-\sqrt{2193}-3}{4}\approx -12.457369474
Graph
Share
Copied to clipboard
2x^{2}+3x+7=280
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+3x+7-280=280-280
Subtract 280 from both sides of the equation.
2x^{2}+3x+7-280=0
Subtracting 280 from itself leaves 0.
2x^{2}+3x-273=0
Subtract 280 from 7.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-273\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -273 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-273\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-273\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+2184}}{2\times 2}
Multiply -8 times -273.
x=\frac{-3±\sqrt{2193}}{2\times 2}
Add 9 to 2184.
x=\frac{-3±\sqrt{2193}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{2193}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{2193}}{4} when ± is plus. Add -3 to \sqrt{2193}.
x=\frac{-\sqrt{2193}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{2193}}{4} when ± is minus. Subtract \sqrt{2193} from -3.
x=\frac{\sqrt{2193}-3}{4} x=\frac{-\sqrt{2193}-3}{4}
The equation is now solved.
2x^{2}+3x+7=280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+3x+7-7=280-7
Subtract 7 from both sides of the equation.
2x^{2}+3x=280-7
Subtracting 7 from itself leaves 0.
2x^{2}+3x=273
Subtract 7 from 280.
\frac{2x^{2}+3x}{2}=\frac{273}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{273}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{273}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{273}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{2193}{16}
Add \frac{273}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{2193}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{2193}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{2193}}{4} x+\frac{3}{4}=-\frac{\sqrt{2193}}{4}
Simplify.
x=\frac{\sqrt{2193}-3}{4} x=\frac{-\sqrt{2193}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}