Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}=6-3.2
Subtract 3.2 from both sides.
2x^{2}=2.8
Subtract 3.2 from 6 to get 2.8.
x^{2}=\frac{2.8}{2}
Divide both sides by 2.
x^{2}=\frac{28}{20}
Expand \frac{2.8}{2} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{7}{5}
Reduce the fraction \frac{28}{20} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{35}}{5} x=-\frac{\sqrt{35}}{5}
Take the square root of both sides of the equation.
2x^{2}+3.2-6=0
Subtract 6 from both sides.
2x^{2}-2.8=0
Subtract 6 from 3.2 to get -2.8.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-2.8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -2.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-2.8\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-2.8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{22.4}}{2\times 2}
Multiply -8 times -2.8.
x=\frac{0±\frac{4\sqrt{35}}{5}}{2\times 2}
Take the square root of 22.4.
x=\frac{0±\frac{4\sqrt{35}}{5}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{35}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{35}}{5}}{4} when ± is plus.
x=-\frac{\sqrt{35}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{35}}{5}}{4} when ± is minus.
x=\frac{\sqrt{35}}{5} x=-\frac{\sqrt{35}}{5}
The equation is now solved.