Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+25x+26=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 2\times 26}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{625-4\times 2\times 26}}{2\times 2}
Square 25.
x=\frac{-25±\sqrt{625-8\times 26}}{2\times 2}
Multiply -4 times 2.
x=\frac{-25±\sqrt{625-208}}{2\times 2}
Multiply -8 times 26.
x=\frac{-25±\sqrt{417}}{2\times 2}
Add 625 to -208.
x=\frac{-25±\sqrt{417}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{417}-25}{4}
Now solve the equation x=\frac{-25±\sqrt{417}}{4} when ± is plus. Add -25 to \sqrt{417}.
x=\frac{-\sqrt{417}-25}{4}
Now solve the equation x=\frac{-25±\sqrt{417}}{4} when ± is minus. Subtract \sqrt{417} from -25.
2x^{2}+25x+26=2\left(x-\frac{\sqrt{417}-25}{4}\right)\left(x-\frac{-\sqrt{417}-25}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-25+\sqrt{417}}{4} for x_{1} and \frac{-25-\sqrt{417}}{4} for x_{2}.