Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+7x+6\right)
Factor out 2.
a+b=7 ab=1\times 6=6
Consider x^{2}+7x+6. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=1 b=6
The solution is the pair that gives sum 7.
\left(x^{2}+x\right)+\left(6x+6\right)
Rewrite x^{2}+7x+6 as \left(x^{2}+x\right)+\left(6x+6\right).
x\left(x+1\right)+6\left(x+1\right)
Factor out x in the first and 6 in the second group.
\left(x+1\right)\left(x+6\right)
Factor out common term x+1 by using distributive property.
2\left(x+1\right)\left(x+6\right)
Rewrite the complete factored expression.
2x^{2}+14x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 2\times 12}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 2\times 12}}{2\times 2}
Square 14.
x=\frac{-14±\sqrt{196-8\times 12}}{2\times 2}
Multiply -4 times 2.
x=\frac{-14±\sqrt{196-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-14±\sqrt{100}}{2\times 2}
Add 196 to -96.
x=\frac{-14±10}{2\times 2}
Take the square root of 100.
x=\frac{-14±10}{4}
Multiply 2 times 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{-14±10}{4} when ± is plus. Add -14 to 10.
x=-1
Divide -4 by 4.
x=-\frac{24}{4}
Now solve the equation x=\frac{-14±10}{4} when ± is minus. Subtract 10 from -14.
x=-6
Divide -24 by 4.
2x^{2}+14x+12=2\left(x-\left(-1\right)\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -6 for x_{2}.
2x^{2}+14x+12=2\left(x+1\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.