Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+12x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-45\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 2\left(-45\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-45\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+360}}{2\times 2}
Multiply -8 times -45.
x=\frac{-12±\sqrt{504}}{2\times 2}
Add 144 to 360.
x=\frac{-12±6\sqrt{14}}{2\times 2}
Take the square root of 504.
x=\frac{-12±6\sqrt{14}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{14}-12}{4}
Now solve the equation x=\frac{-12±6\sqrt{14}}{4} when ± is plus. Add -12 to 6\sqrt{14}.
x=\frac{3\sqrt{14}}{2}-3
Divide -12+6\sqrt{14} by 4.
x=\frac{-6\sqrt{14}-12}{4}
Now solve the equation x=\frac{-12±6\sqrt{14}}{4} when ± is minus. Subtract 6\sqrt{14} from -12.
x=-\frac{3\sqrt{14}}{2}-3
Divide -12-6\sqrt{14} by 4.
2x^{2}+12x-45=2\left(x-\left(\frac{3\sqrt{14}}{2}-3\right)\right)\left(x-\left(-\frac{3\sqrt{14}}{2}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+\frac{3\sqrt{14}}{2} for x_{1} and -3-\frac{3\sqrt{14}}{2} for x_{2}.