Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+17x+35-3x^{2}-9x-2+6
Combine 10x and 7x to get 17x.
-x^{2}+17x+35-9x-2+6
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+8x+35-2+6
Combine 17x and -9x to get 8x.
-x^{2}+8x+33+6
Subtract 2 from 35 to get 33.
-x^{2}+8x+39
Add 33 and 6 to get 39.
factor(2x^{2}+17x+35-3x^{2}-9x-2+6)
Combine 10x and 7x to get 17x.
factor(-x^{2}+17x+35-9x-2+6)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
factor(-x^{2}+8x+35-2+6)
Combine 17x and -9x to get 8x.
factor(-x^{2}+8x+33+6)
Subtract 2 from 35 to get 33.
factor(-x^{2}+8x+39)
Add 33 and 6 to get 39.
-x^{2}+8x+39=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 39}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 39}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 39}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+156}}{2\left(-1\right)}
Multiply 4 times 39.
x=\frac{-8±\sqrt{220}}{2\left(-1\right)}
Add 64 to 156.
x=\frac{-8±2\sqrt{55}}{2\left(-1\right)}
Take the square root of 220.
x=\frac{-8±2\sqrt{55}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{55}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{55}}{-2} when ± is plus. Add -8 to 2\sqrt{55}.
x=4-\sqrt{55}
Divide -8+2\sqrt{55} by -2.
x=\frac{-2\sqrt{55}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{55}}{-2} when ± is minus. Subtract 2\sqrt{55} from -8.
x=\sqrt{55}+4
Divide -8-2\sqrt{55} by -2.
-x^{2}+8x+39=-\left(x-\left(4-\sqrt{55}\right)\right)\left(x-\left(\sqrt{55}+4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4-\sqrt{55} for x_{1} and 4+\sqrt{55} for x_{2}.