Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+10x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 5}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 2\times 5}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-10±\sqrt{60}}{2\times 2}
Add 100 to -40.
x=\frac{-10±2\sqrt{15}}{2\times 2}
Take the square root of 60.
x=\frac{-10±2\sqrt{15}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{15}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{15}}{4} when ± is plus. Add -10 to 2\sqrt{15}.
x=\frac{\sqrt{15}-5}{2}
Divide -10+2\sqrt{15} by 4.
x=\frac{-2\sqrt{15}-10}{4}
Now solve the equation x=\frac{-10±2\sqrt{15}}{4} when ± is minus. Subtract 2\sqrt{15} from -10.
x=\frac{-\sqrt{15}-5}{2}
Divide -10-2\sqrt{15} by 4.
2x^{2}+10x+5=2\left(x-\frac{\sqrt{15}-5}{2}\right)\left(x-\frac{-\sqrt{15}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{15}}{2} for x_{1} and \frac{-5-\sqrt{15}}{2} for x_{2}.