Solve for a
a=2x+3+\frac{1}{x}
x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{a^{2}-6a+1}+a-3}{4}
x=\frac{-\sqrt{a^{2}-6a+1}+a-3}{4}
Solve for x
x=\frac{\sqrt{a^{2}-6a+1}+a-3}{4}
x=\frac{-\sqrt{a^{2}-6a+1}+a-3}{4}\text{, }a\geq 2\sqrt{2}+3\text{ or }a\leq 3-2\sqrt{2}
Graph
Share
Copied to clipboard
2x^{2}+3x-ax+1=0
Use the distributive property to multiply 3-a by x.
3x-ax+1=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-ax+1=-2x^{2}-3x
Subtract 3x from both sides.
-ax=-2x^{2}-3x-1
Subtract 1 from both sides.
\left(-x\right)a=-2x^{2}-3x-1
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=-\frac{\left(x+1\right)\left(2x+1\right)}{-x}
Divide both sides by -x.
a=-\frac{\left(x+1\right)\left(2x+1\right)}{-x}
Dividing by -x undoes the multiplication by -x.
a=2x+3+\frac{1}{x}
Divide -\left(1+x\right)\left(1+2x\right) by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}