Solve for x (complex solution)
x=\frac{1+\sqrt{3}i}{4}\approx 0.25+0.433012702i
x=\frac{-\sqrt{3}i+1}{4}\approx 0.25-0.433012702i
Graph
Share
Copied to clipboard
2x^{2}+\frac{1}{2}-x=0
Subtract x from both sides.
2x^{2}-x+\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times \frac{1}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\times \frac{1}{2}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\times 2}
Multiply -8 times \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\times 2}
Add 1 to -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\times 2}
Take the square root of -3.
x=\frac{1±\sqrt{3}i}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±\sqrt{3}i}{4}
Multiply 2 times 2.
x=\frac{1+\sqrt{3}i}{4}
Now solve the equation x=\frac{1±\sqrt{3}i}{4} when ± is plus. Add 1 to i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{4}
Now solve the equation x=\frac{1±\sqrt{3}i}{4} when ± is minus. Subtract i\sqrt{3} from 1.
x=\frac{1+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+1}{4}
The equation is now solved.
2x^{2}+\frac{1}{2}-x=0
Subtract x from both sides.
2x^{2}-x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-x}{2}=-\frac{\frac{1}{2}}{2}
Divide both sides by 2.
x^{2}-\frac{1}{2}x=-\frac{\frac{1}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{1}{2}x=-\frac{1}{4}
Divide -\frac{1}{2} by 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{4}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{16}
Add -\frac{1}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{3}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{3}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{3}i}{4} x-\frac{1}{4}=-\frac{\sqrt{3}i}{4}
Simplify.
x=\frac{1+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}