Factor
2\left(m+3\right)\left(m+12\right)
Evaluate
2\left(m+3\right)\left(m+12\right)
Share
Copied to clipboard
2\left(m^{2}+15m+36\right)
Factor out 2.
a+b=15 ab=1\times 36=36
Consider m^{2}+15m+36. Factor the expression by grouping. First, the expression needs to be rewritten as m^{2}+am+bm+36. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=3 b=12
The solution is the pair that gives sum 15.
\left(m^{2}+3m\right)+\left(12m+36\right)
Rewrite m^{2}+15m+36 as \left(m^{2}+3m\right)+\left(12m+36\right).
m\left(m+3\right)+12\left(m+3\right)
Factor out m in the first and 12 in the second group.
\left(m+3\right)\left(m+12\right)
Factor out common term m+3 by using distributive property.
2\left(m+3\right)\left(m+12\right)
Rewrite the complete factored expression.
2m^{2}+30m+72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-30±\sqrt{30^{2}-4\times 2\times 72}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-30±\sqrt{900-4\times 2\times 72}}{2\times 2}
Square 30.
m=\frac{-30±\sqrt{900-8\times 72}}{2\times 2}
Multiply -4 times 2.
m=\frac{-30±\sqrt{900-576}}{2\times 2}
Multiply -8 times 72.
m=\frac{-30±\sqrt{324}}{2\times 2}
Add 900 to -576.
m=\frac{-30±18}{2\times 2}
Take the square root of 324.
m=\frac{-30±18}{4}
Multiply 2 times 2.
m=-\frac{12}{4}
Now solve the equation m=\frac{-30±18}{4} when ± is plus. Add -30 to 18.
m=-3
Divide -12 by 4.
m=-\frac{48}{4}
Now solve the equation m=\frac{-30±18}{4} when ± is minus. Subtract 18 from -30.
m=-12
Divide -48 by 4.
2m^{2}+30m+72=2\left(m-\left(-3\right)\right)\left(m-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -12 for x_{2}.
2m^{2}+30m+72=2\left(m+3\right)\left(m+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}