Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

2k^{2}-15k-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -15 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-15\right)±\sqrt{225-4\times 2\left(-12\right)}}{2\times 2}
Square -15.
k=\frac{-\left(-15\right)±\sqrt{225-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{-\left(-15\right)±\sqrt{225+96}}{2\times 2}
Multiply -8 times -12.
k=\frac{-\left(-15\right)±\sqrt{321}}{2\times 2}
Add 225 to 96.
k=\frac{15±\sqrt{321}}{2\times 2}
The opposite of -15 is 15.
k=\frac{15±\sqrt{321}}{4}
Multiply 2 times 2.
k=\frac{\sqrt{321}+15}{4}
Now solve the equation k=\frac{15±\sqrt{321}}{4} when ± is plus. Add 15 to \sqrt{321}.
k=\frac{15-\sqrt{321}}{4}
Now solve the equation k=\frac{15±\sqrt{321}}{4} when ± is minus. Subtract \sqrt{321} from 15.
k=\frac{\sqrt{321}+15}{4} k=\frac{15-\sqrt{321}}{4}
The equation is now solved.
2k^{2}-15k-12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2k^{2}-15k-12-\left(-12\right)=-\left(-12\right)
Add 12 to both sides of the equation.
2k^{2}-15k=-\left(-12\right)
Subtracting -12 from itself leaves 0.
2k^{2}-15k=12
Subtract -12 from 0.
\frac{2k^{2}-15k}{2}=\frac{12}{2}
Divide both sides by 2.
k^{2}-\frac{15}{2}k=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}-\frac{15}{2}k=6
Divide 12 by 2.
k^{2}-\frac{15}{2}k+\left(-\frac{15}{4}\right)^{2}=6+\left(-\frac{15}{4}\right)^{2}
Divide -\frac{15}{2}, the coefficient of the x term, by 2 to get -\frac{15}{4}. Then add the square of -\frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{15}{2}k+\frac{225}{16}=6+\frac{225}{16}
Square -\frac{15}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{15}{2}k+\frac{225}{16}=\frac{321}{16}
Add 6 to \frac{225}{16}.
\left(k-\frac{15}{4}\right)^{2}=\frac{321}{16}
Factor k^{2}-\frac{15}{2}k+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{15}{4}\right)^{2}}=\sqrt{\frac{321}{16}}
Take the square root of both sides of the equation.
k-\frac{15}{4}=\frac{\sqrt{321}}{4} k-\frac{15}{4}=-\frac{\sqrt{321}}{4}
Simplify.
k=\frac{\sqrt{321}+15}{4} k=\frac{15-\sqrt{321}}{4}
Add \frac{15}{4} to both sides of the equation.