Solve for h
h=5\sqrt{2}+10\approx 17.071067812
h=10-5\sqrt{2}\approx 2.928932188
Share
Copied to clipboard
2h^{2}-40h+100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 100}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -40 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 100}}{2\times 2}
Square -40.
h=\frac{-\left(-40\right)±\sqrt{1600-8\times 100}}{2\times 2}
Multiply -4 times 2.
h=\frac{-\left(-40\right)±\sqrt{1600-800}}{2\times 2}
Multiply -8 times 100.
h=\frac{-\left(-40\right)±\sqrt{800}}{2\times 2}
Add 1600 to -800.
h=\frac{-\left(-40\right)±20\sqrt{2}}{2\times 2}
Take the square root of 800.
h=\frac{40±20\sqrt{2}}{2\times 2}
The opposite of -40 is 40.
h=\frac{40±20\sqrt{2}}{4}
Multiply 2 times 2.
h=\frac{20\sqrt{2}+40}{4}
Now solve the equation h=\frac{40±20\sqrt{2}}{4} when ± is plus. Add 40 to 20\sqrt{2}.
h=5\sqrt{2}+10
Divide 40+20\sqrt{2} by 4.
h=\frac{40-20\sqrt{2}}{4}
Now solve the equation h=\frac{40±20\sqrt{2}}{4} when ± is minus. Subtract 20\sqrt{2} from 40.
h=10-5\sqrt{2}
Divide 40-20\sqrt{2} by 4.
h=5\sqrt{2}+10 h=10-5\sqrt{2}
The equation is now solved.
2h^{2}-40h+100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2h^{2}-40h+100-100=-100
Subtract 100 from both sides of the equation.
2h^{2}-40h=-100
Subtracting 100 from itself leaves 0.
\frac{2h^{2}-40h}{2}=-\frac{100}{2}
Divide both sides by 2.
h^{2}+\left(-\frac{40}{2}\right)h=-\frac{100}{2}
Dividing by 2 undoes the multiplication by 2.
h^{2}-20h=-\frac{100}{2}
Divide -40 by 2.
h^{2}-20h=-50
Divide -100 by 2.
h^{2}-20h+\left(-10\right)^{2}=-50+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-20h+100=-50+100
Square -10.
h^{2}-20h+100=50
Add -50 to 100.
\left(h-10\right)^{2}=50
Factor h^{2}-20h+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-10\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
h-10=5\sqrt{2} h-10=-5\sqrt{2}
Simplify.
h=5\sqrt{2}+10 h=10-5\sqrt{2}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}