Evaluate
2-2b-b^{2}
Factor
-\left(b-\left(-\sqrt{3}-1\right)\right)\left(b-\left(\sqrt{3}-1\right)\right)
Share
Copied to clipboard
-b^{2}-b-4-b+6
Combine 2b^{2} and -3b^{2} to get -b^{2}.
-b^{2}-2b-4+6
Combine -b and -b to get -2b.
-b^{2}-2b+2
Add -4 and 6 to get 2.
factor(-b^{2}-b-4-b+6)
Combine 2b^{2} and -3b^{2} to get -b^{2}.
factor(-b^{2}-2b-4+6)
Combine -b and -b to get -2b.
factor(-b^{2}-2b+2)
Add -4 and 6 to get 2.
-b^{2}-2b+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square -2.
b=\frac{-\left(-2\right)±\sqrt{4+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-\left(-2\right)±\sqrt{4+8}}{2\left(-1\right)}
Multiply 4 times 2.
b=\frac{-\left(-2\right)±\sqrt{12}}{2\left(-1\right)}
Add 4 to 8.
b=\frac{-\left(-2\right)±2\sqrt{3}}{2\left(-1\right)}
Take the square root of 12.
b=\frac{2±2\sqrt{3}}{2\left(-1\right)}
The opposite of -2 is 2.
b=\frac{2±2\sqrt{3}}{-2}
Multiply 2 times -1.
b=\frac{2\sqrt{3}+2}{-2}
Now solve the equation b=\frac{2±2\sqrt{3}}{-2} when ± is plus. Add 2 to 2\sqrt{3}.
b=-\left(\sqrt{3}+1\right)
Divide 2+2\sqrt{3} by -2.
b=\frac{2-2\sqrt{3}}{-2}
Now solve the equation b=\frac{2±2\sqrt{3}}{-2} when ± is minus. Subtract 2\sqrt{3} from 2.
b=\sqrt{3}-1
Divide 2-2\sqrt{3} by -2.
-b^{2}-2b+2=-\left(b-\left(-\left(\sqrt{3}+1\right)\right)\right)\left(b-\left(\sqrt{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(1+\sqrt{3}\right) for x_{1} and -1+\sqrt{3} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}