Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

4\left(2\times \left(\frac{3+\sqrt{33}}{4}\right)^{2}-3\times \frac{3+\sqrt{33}}{4}\right)-12=0
Multiply both sides of the equation by 4.
4\left(2\times \frac{\left(3+\sqrt{33}\right)^{2}}{4^{2}}-3\times \frac{3+\sqrt{33}}{4}\right)-12=0
To raise \frac{3+\sqrt{33}}{4} to a power, raise both numerator and denominator to the power and then divide.
4\left(\frac{2\left(3+\sqrt{33}\right)^{2}}{4^{2}}-3\times \frac{3+\sqrt{33}}{4}\right)-12=0
Express 2\times \frac{\left(3+\sqrt{33}\right)^{2}}{4^{2}} as a single fraction.
4\left(\frac{2\left(3+\sqrt{33}\right)^{2}}{4^{2}}-\frac{3\left(3+\sqrt{33}\right)}{4}\right)-12=0
Express 3\times \frac{3+\sqrt{33}}{4} as a single fraction.
4\left(\frac{2\left(3+\sqrt{33}\right)^{2}}{4^{2}}-\frac{9+3\sqrt{33}}{4}\right)-12=0
Use the distributive property to multiply 3 by 3+\sqrt{33}.
4\left(\frac{2\left(3+\sqrt{33}\right)^{2}}{16}-\frac{4\left(9+3\sqrt{33}\right)}{16}\right)-12=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4^{2} and 4 is 16. Multiply \frac{9+3\sqrt{33}}{4} times \frac{4}{4}.
4\times \frac{2\left(3+\sqrt{33}\right)^{2}-4\left(9+3\sqrt{33}\right)}{16}-12=0
Since \frac{2\left(3+\sqrt{33}\right)^{2}}{16} and \frac{4\left(9+3\sqrt{33}\right)}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(3+\sqrt{33}\right)^{2}-4\left(9+3\sqrt{33}\right)}{4}-12=0
Cancel out 16, the greatest common factor in 4 and 16.
\frac{2\left(3+\sqrt{33}\right)^{2}-4\left(9+3\sqrt{33}\right)}{4}-\frac{12\times 4}{4}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{4}{4}.
\frac{2\left(3+\sqrt{33}\right)^{2}-4\left(9+3\sqrt{33}\right)-12\times 4}{4}=0
Since \frac{2\left(3+\sqrt{33}\right)^{2}-4\left(9+3\sqrt{33}\right)}{4} and \frac{12\times 4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(9+6\sqrt{33}+\left(\sqrt{33}\right)^{2}\right)-4\left(9+3\sqrt{33}\right)-12\times 4}{4}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{33}\right)^{2}.
\frac{2\left(9+6\sqrt{33}+33\right)-4\left(9+3\sqrt{33}\right)-12\times 4}{4}=0
The square of \sqrt{33} is 33.
\frac{2\left(42+6\sqrt{33}\right)-4\left(9+3\sqrt{33}\right)-12\times 4}{4}=0
Add 9 and 33 to get 42.
\frac{2\left(42+6\sqrt{33}\right)-4\left(9+3\sqrt{33}\right)-48}{4}=0
Multiply -12 and 4 to get -48.
2\left(42+6\sqrt{33}\right)-4\left(9+3\sqrt{33}\right)-48=0
Multiply both sides of the equation by 4.
84+12\sqrt{33}-4\left(9+3\sqrt{33}\right)-48=0
Use the distributive property to multiply 2 by 42+6\sqrt{33}.
84+12\sqrt{33}-36-12\sqrt{33}-48=0
Use the distributive property to multiply -4 by 9+3\sqrt{33}.
48+12\sqrt{33}-12\sqrt{33}-48=0
Subtract 36 from 84 to get 48.
48-48=0
Combine 12\sqrt{33} and -12\sqrt{33} to get 0.
0=0
Subtract 48 from 48 to get 0.
\text{true}
Compare 0 and 0.