Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\frac{9}{4}-x+\frac{1}{9}x^{2}\right)=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{1}{3}\left(x-1\right)+\frac{1}{3}\left(1-x\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}-\frac{1}{3}x\right)^{2}.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{1}{3}\left(x-1\right)+\frac{1}{3}\left(1-x\right)\right)
Use the distributive property to multiply 2 by \frac{9}{4}-x+\frac{1}{9}x^{2}.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{1}{3}x+\frac{1}{3}+\frac{1}{3}\left(1-x\right)\right)
Use the distributive property to multiply -\frac{1}{3} by x-1.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{1}{3}x+\frac{1}{3}+\frac{1}{3}-\frac{1}{3}x\right)
Use the distributive property to multiply \frac{1}{3} by 1-x.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{1}{3}x+\frac{2}{3}-\frac{1}{3}x\right)
Add \frac{1}{3} and \frac{1}{3} to get \frac{2}{3}.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=\left(\frac{3}{2}-\frac{1}{3}x\right)\left(-\frac{2}{3}x+\frac{2}{3}\right)
Combine -\frac{1}{3}x and -\frac{1}{3}x to get -\frac{2}{3}x.
\frac{9}{2}-2x+\frac{2}{9}x^{2}=-\frac{11}{9}x+1+\frac{2}{9}x^{2}
Use the distributive property to multiply \frac{3}{2}-\frac{1}{3}x by -\frac{2}{3}x+\frac{2}{3} and combine like terms.
\frac{9}{2}-2x+\frac{2}{9}x^{2}+\frac{11}{9}x=1+\frac{2}{9}x^{2}
Add \frac{11}{9}x to both sides.
\frac{9}{2}-\frac{7}{9}x+\frac{2}{9}x^{2}=1+\frac{2}{9}x^{2}
Combine -2x and \frac{11}{9}x to get -\frac{7}{9}x.
\frac{9}{2}-\frac{7}{9}x+\frac{2}{9}x^{2}-\frac{2}{9}x^{2}=1
Subtract \frac{2}{9}x^{2} from both sides.
\frac{9}{2}-\frac{7}{9}x=1
Combine \frac{2}{9}x^{2} and -\frac{2}{9}x^{2} to get 0.
-\frac{7}{9}x=1-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
-\frac{7}{9}x=-\frac{7}{2}
Subtract \frac{9}{2} from 1 to get -\frac{7}{2}.
x=-\frac{7}{2}\left(-\frac{9}{7}\right)
Multiply both sides by -\frac{9}{7}, the reciprocal of -\frac{7}{9}.
x=\frac{9}{2}
Multiply -\frac{7}{2} and -\frac{9}{7} to get \frac{9}{2}.