Solve for λ
\lambda =-\frac{\sqrt{10945}}{10}+\frac{39}{2}\approx 9.038164597
\lambda =\frac{\sqrt{10945}}{10}+\frac{39}{2}\approx 29.961835403
Share
Copied to clipboard
42\times 52=\left(21-1\right)\left(20-\lambda \right)\left(19-\lambda \right)
Multiply 2 and 21 to get 42.
2184=\left(21-1\right)\left(20-\lambda \right)\left(19-\lambda \right)
Multiply 42 and 52 to get 2184.
2184=20\left(20-\lambda \right)\left(19-\lambda \right)
Subtract 1 from 21 to get 20.
2184=\left(400-20\lambda \right)\left(19-\lambda \right)
Use the distributive property to multiply 20 by 20-\lambda .
2184=7600-780\lambda +20\lambda ^{2}
Use the distributive property to multiply 400-20\lambda by 19-\lambda and combine like terms.
7600-780\lambda +20\lambda ^{2}=2184
Swap sides so that all variable terms are on the left hand side.
7600-780\lambda +20\lambda ^{2}-2184=0
Subtract 2184 from both sides.
5416-780\lambda +20\lambda ^{2}=0
Subtract 2184 from 7600 to get 5416.
20\lambda ^{2}-780\lambda +5416=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-780\right)±\sqrt{\left(-780\right)^{2}-4\times 20\times 5416}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -780 for b, and 5416 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-780\right)±\sqrt{608400-4\times 20\times 5416}}{2\times 20}
Square -780.
\lambda =\frac{-\left(-780\right)±\sqrt{608400-80\times 5416}}{2\times 20}
Multiply -4 times 20.
\lambda =\frac{-\left(-780\right)±\sqrt{608400-433280}}{2\times 20}
Multiply -80 times 5416.
\lambda =\frac{-\left(-780\right)±\sqrt{175120}}{2\times 20}
Add 608400 to -433280.
\lambda =\frac{-\left(-780\right)±4\sqrt{10945}}{2\times 20}
Take the square root of 175120.
\lambda =\frac{780±4\sqrt{10945}}{2\times 20}
The opposite of -780 is 780.
\lambda =\frac{780±4\sqrt{10945}}{40}
Multiply 2 times 20.
\lambda =\frac{4\sqrt{10945}+780}{40}
Now solve the equation \lambda =\frac{780±4\sqrt{10945}}{40} when ± is plus. Add 780 to 4\sqrt{10945}.
\lambda =\frac{\sqrt{10945}}{10}+\frac{39}{2}
Divide 780+4\sqrt{10945} by 40.
\lambda =\frac{780-4\sqrt{10945}}{40}
Now solve the equation \lambda =\frac{780±4\sqrt{10945}}{40} when ± is minus. Subtract 4\sqrt{10945} from 780.
\lambda =-\frac{\sqrt{10945}}{10}+\frac{39}{2}
Divide 780-4\sqrt{10945} by 40.
\lambda =\frac{\sqrt{10945}}{10}+\frac{39}{2} \lambda =-\frac{\sqrt{10945}}{10}+\frac{39}{2}
The equation is now solved.
42\times 52=\left(21-1\right)\left(20-\lambda \right)\left(19-\lambda \right)
Multiply 2 and 21 to get 42.
2184=\left(21-1\right)\left(20-\lambda \right)\left(19-\lambda \right)
Multiply 42 and 52 to get 2184.
2184=20\left(20-\lambda \right)\left(19-\lambda \right)
Subtract 1 from 21 to get 20.
2184=\left(400-20\lambda \right)\left(19-\lambda \right)
Use the distributive property to multiply 20 by 20-\lambda .
2184=7600-780\lambda +20\lambda ^{2}
Use the distributive property to multiply 400-20\lambda by 19-\lambda and combine like terms.
7600-780\lambda +20\lambda ^{2}=2184
Swap sides so that all variable terms are on the left hand side.
-780\lambda +20\lambda ^{2}=2184-7600
Subtract 7600 from both sides.
-780\lambda +20\lambda ^{2}=-5416
Subtract 7600 from 2184 to get -5416.
20\lambda ^{2}-780\lambda =-5416
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20\lambda ^{2}-780\lambda }{20}=-\frac{5416}{20}
Divide both sides by 20.
\lambda ^{2}+\left(-\frac{780}{20}\right)\lambda =-\frac{5416}{20}
Dividing by 20 undoes the multiplication by 20.
\lambda ^{2}-39\lambda =-\frac{5416}{20}
Divide -780 by 20.
\lambda ^{2}-39\lambda =-\frac{1354}{5}
Reduce the fraction \frac{-5416}{20} to lowest terms by extracting and canceling out 4.
\lambda ^{2}-39\lambda +\left(-\frac{39}{2}\right)^{2}=-\frac{1354}{5}+\left(-\frac{39}{2}\right)^{2}
Divide -39, the coefficient of the x term, by 2 to get -\frac{39}{2}. Then add the square of -\frac{39}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-39\lambda +\frac{1521}{4}=-\frac{1354}{5}+\frac{1521}{4}
Square -\frac{39}{2} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-39\lambda +\frac{1521}{4}=\frac{2189}{20}
Add -\frac{1354}{5} to \frac{1521}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda -\frac{39}{2}\right)^{2}=\frac{2189}{20}
Factor \lambda ^{2}-39\lambda +\frac{1521}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{39}{2}\right)^{2}}=\sqrt{\frac{2189}{20}}
Take the square root of both sides of the equation.
\lambda -\frac{39}{2}=\frac{\sqrt{10945}}{10} \lambda -\frac{39}{2}=-\frac{\sqrt{10945}}{10}
Simplify.
\lambda =\frac{\sqrt{10945}}{10}+\frac{39}{2} \lambda =-\frac{\sqrt{10945}}{10}+\frac{39}{2}
Add \frac{39}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}