Evaluate
\frac{5}{3}\approx 1.666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
2\left(\frac{24+1}{4}-\frac{4\times 6+1}{6}\right)\times \frac{2}{5}
Multiply 6 and 4 to get 24.
2\left(\frac{25}{4}-\frac{4\times 6+1}{6}\right)\times \frac{2}{5}
Add 24 and 1 to get 25.
2\left(\frac{25}{4}-\frac{24+1}{6}\right)\times \frac{2}{5}
Multiply 4 and 6 to get 24.
2\left(\frac{25}{4}-\frac{25}{6}\right)\times \frac{2}{5}
Add 24 and 1 to get 25.
2\left(\frac{75}{12}-\frac{50}{12}\right)\times \frac{2}{5}
Least common multiple of 4 and 6 is 12. Convert \frac{25}{4} and \frac{25}{6} to fractions with denominator 12.
2\times \frac{75-50}{12}\times \frac{2}{5}
Since \frac{75}{12} and \frac{50}{12} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{25}{12}\times \frac{2}{5}
Subtract 50 from 75 to get 25.
\frac{2\times 25}{12}\times \frac{2}{5}
Express 2\times \frac{25}{12} as a single fraction.
\frac{50}{12}\times \frac{2}{5}
Multiply 2 and 25 to get 50.
\frac{25}{6}\times \frac{2}{5}
Reduce the fraction \frac{50}{12} to lowest terms by extracting and canceling out 2.
\frac{25\times 2}{6\times 5}
Multiply \frac{25}{6} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{50}{30}
Do the multiplications in the fraction \frac{25\times 2}{6\times 5}.
\frac{5}{3}
Reduce the fraction \frac{50}{30} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}