Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{4}a^{2}+3a=\frac{6}{2}
Divide both sides by 2.
-\frac{3}{4}a^{2}+3a=3
Divide 6 by 2 to get 3.
-\frac{3}{4}a^{2}+3a-3=0
Subtract 3 from both sides.
a=\frac{-3±\sqrt{3^{2}-4\left(-\frac{3}{4}\right)\left(-3\right)}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-\frac{3}{4}\right)\left(-3\right)}}{2\left(-\frac{3}{4}\right)}
Square 3.
a=\frac{-3±\sqrt{9+3\left(-3\right)}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
a=\frac{-3±\sqrt{9-9}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times -3.
a=\frac{-3±\sqrt{0}}{2\left(-\frac{3}{4}\right)}
Add 9 to -9.
a=-\frac{3}{2\left(-\frac{3}{4}\right)}
Take the square root of 0.
a=-\frac{3}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
a=2
Divide -3 by -\frac{3}{2} by multiplying -3 by the reciprocal of -\frac{3}{2}.
-\frac{3}{4}a^{2}+3a=\frac{6}{2}
Divide both sides by 2.
-\frac{3}{4}a^{2}+3a=3
Divide 6 by 2 to get 3.
\frac{-\frac{3}{4}a^{2}+3a}{-\frac{3}{4}}=\frac{3}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{3}{-\frac{3}{4}}a=\frac{3}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
a^{2}-4a=\frac{3}{-\frac{3}{4}}
Divide 3 by -\frac{3}{4} by multiplying 3 by the reciprocal of -\frac{3}{4}.
a^{2}-4a=-4
Divide 3 by -\frac{3}{4} by multiplying 3 by the reciprocal of -\frac{3}{4}.
a^{2}-4a+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-4+4
Square -2.
a^{2}-4a+4=0
Add -4 to 4.
\left(a-2\right)^{2}=0
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
a-2=0 a-2=0
Simplify.
a=2 a=2
Add 2 to both sides of the equation.
a=2
The equation is now solved. Solutions are the same.