Solve for a
a=1
a=3
Share
Copied to clipboard
-\frac{3}{4}a^{2}+3a=\frac{\frac{9}{2}}{2}
Divide both sides by 2.
-\frac{3}{4}a^{2}+3a=\frac{9}{2\times 2}
Express \frac{\frac{9}{2}}{2} as a single fraction.
-\frac{3}{4}a^{2}+3a=\frac{9}{4}
Multiply 2 and 2 to get 4.
-\frac{3}{4}a^{2}+3a-\frac{9}{4}=0
Subtract \frac{9}{4} from both sides.
a=\frac{-3±\sqrt{3^{2}-4\left(-\frac{3}{4}\right)\left(-\frac{9}{4}\right)}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, 3 for b, and -\frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-\frac{3}{4}\right)\left(-\frac{9}{4}\right)}}{2\left(-\frac{3}{4}\right)}
Square 3.
a=\frac{-3±\sqrt{9+3\left(-\frac{9}{4}\right)}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
a=\frac{-3±\sqrt{9-\frac{27}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times -\frac{9}{4}.
a=\frac{-3±\sqrt{\frac{9}{4}}}{2\left(-\frac{3}{4}\right)}
Add 9 to -\frac{27}{4}.
a=\frac{-3±\frac{3}{2}}{2\left(-\frac{3}{4}\right)}
Take the square root of \frac{9}{4}.
a=\frac{-3±\frac{3}{2}}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
a=-\frac{\frac{3}{2}}{-\frac{3}{2}}
Now solve the equation a=\frac{-3±\frac{3}{2}}{-\frac{3}{2}} when ± is plus. Add -3 to \frac{3}{2}.
a=1
Divide -\frac{3}{2} by -\frac{3}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{3}{2}.
a=-\frac{\frac{9}{2}}{-\frac{3}{2}}
Now solve the equation a=\frac{-3±\frac{3}{2}}{-\frac{3}{2}} when ± is minus. Subtract \frac{3}{2} from -3.
a=3
Divide -\frac{9}{2} by -\frac{3}{2} by multiplying -\frac{9}{2} by the reciprocal of -\frac{3}{2}.
a=1 a=3
The equation is now solved.
-\frac{3}{4}a^{2}+3a=\frac{\frac{9}{2}}{2}
Divide both sides by 2.
-\frac{3}{4}a^{2}+3a=\frac{9}{2\times 2}
Express \frac{\frac{9}{2}}{2} as a single fraction.
-\frac{3}{4}a^{2}+3a=\frac{9}{4}
Multiply 2 and 2 to get 4.
\frac{-\frac{3}{4}a^{2}+3a}{-\frac{3}{4}}=\frac{\frac{9}{4}}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{3}{-\frac{3}{4}}a=\frac{\frac{9}{4}}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
a^{2}-4a=\frac{\frac{9}{4}}{-\frac{3}{4}}
Divide 3 by -\frac{3}{4} by multiplying 3 by the reciprocal of -\frac{3}{4}.
a^{2}-4a=-3
Divide \frac{9}{4} by -\frac{3}{4} by multiplying \frac{9}{4} by the reciprocal of -\frac{3}{4}.
a^{2}-4a+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-3+4
Square -2.
a^{2}-4a+4=1
Add -3 to 4.
\left(a-2\right)^{2}=1
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
a-2=1 a-2=-1
Simplify.
a=3 a=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}