Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-17x+260=0
Multiply x and x to get x^{2}.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 2\times 260}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -17 for b, and 260 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 2\times 260}}{2\times 2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-8\times 260}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-17\right)±\sqrt{289-2080}}{2\times 2}
Multiply -8 times 260.
x=\frac{-\left(-17\right)±\sqrt{-1791}}{2\times 2}
Add 289 to -2080.
x=\frac{-\left(-17\right)±3\sqrt{199}i}{2\times 2}
Take the square root of -1791.
x=\frac{17±3\sqrt{199}i}{2\times 2}
The opposite of -17 is 17.
x=\frac{17±3\sqrt{199}i}{4}
Multiply 2 times 2.
x=\frac{17+3\sqrt{199}i}{4}
Now solve the equation x=\frac{17±3\sqrt{199}i}{4} when ± is plus. Add 17 to 3i\sqrt{199}.
x=\frac{-3\sqrt{199}i+17}{4}
Now solve the equation x=\frac{17±3\sqrt{199}i}{4} when ± is minus. Subtract 3i\sqrt{199} from 17.
x=\frac{17+3\sqrt{199}i}{4} x=\frac{-3\sqrt{199}i+17}{4}
The equation is now solved.
2x^{2}-17x+260=0
Multiply x and x to get x^{2}.
2x^{2}-17x=-260
Subtract 260 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-17x}{2}=-\frac{260}{2}
Divide both sides by 2.
x^{2}-\frac{17}{2}x=-\frac{260}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{17}{2}x=-130
Divide -260 by 2.
x^{2}-\frac{17}{2}x+\left(-\frac{17}{4}\right)^{2}=-130+\left(-\frac{17}{4}\right)^{2}
Divide -\frac{17}{2}, the coefficient of the x term, by 2 to get -\frac{17}{4}. Then add the square of -\frac{17}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{2}x+\frac{289}{16}=-130+\frac{289}{16}
Square -\frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{2}x+\frac{289}{16}=-\frac{1791}{16}
Add -130 to \frac{289}{16}.
\left(x-\frac{17}{4}\right)^{2}=-\frac{1791}{16}
Factor x^{2}-\frac{17}{2}x+\frac{289}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{4}\right)^{2}}=\sqrt{-\frac{1791}{16}}
Take the square root of both sides of the equation.
x-\frac{17}{4}=\frac{3\sqrt{199}i}{4} x-\frac{17}{4}=-\frac{3\sqrt{199}i}{4}
Simplify.
x=\frac{17+3\sqrt{199}i}{4} x=\frac{-3\sqrt{199}i+17}{4}
Add \frac{17}{4} to both sides of the equation.