Solve for x
x=5\sqrt{73}-25\approx 17.720018727
x=-5\sqrt{73}-25\approx -67.720018727
Graph
Share
Copied to clipboard
120x+80x+4x^{2}=2\times 2400
Do the multiplications.
200x+4x^{2}=2\times 2400
Combine 120x and 80x to get 200x.
200x+4x^{2}=4800
Multiply 2 and 2400 to get 4800.
200x+4x^{2}-4800=0
Subtract 4800 from both sides.
4x^{2}+200x-4800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\times 4\left(-4800\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 200 for b, and -4800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\times 4\left(-4800\right)}}{2\times 4}
Square 200.
x=\frac{-200±\sqrt{40000-16\left(-4800\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-200±\sqrt{40000+76800}}{2\times 4}
Multiply -16 times -4800.
x=\frac{-200±\sqrt{116800}}{2\times 4}
Add 40000 to 76800.
x=\frac{-200±40\sqrt{73}}{2\times 4}
Take the square root of 116800.
x=\frac{-200±40\sqrt{73}}{8}
Multiply 2 times 4.
x=\frac{40\sqrt{73}-200}{8}
Now solve the equation x=\frac{-200±40\sqrt{73}}{8} when ± is plus. Add -200 to 40\sqrt{73}.
x=5\sqrt{73}-25
Divide -200+40\sqrt{73} by 8.
x=\frac{-40\sqrt{73}-200}{8}
Now solve the equation x=\frac{-200±40\sqrt{73}}{8} when ± is minus. Subtract 40\sqrt{73} from -200.
x=-5\sqrt{73}-25
Divide -200-40\sqrt{73} by 8.
x=5\sqrt{73}-25 x=-5\sqrt{73}-25
The equation is now solved.
120x+80x+4x^{2}=2\times 2400
Do the multiplications.
200x+4x^{2}=2\times 2400
Combine 120x and 80x to get 200x.
200x+4x^{2}=4800
Multiply 2 and 2400 to get 4800.
4x^{2}+200x=4800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+200x}{4}=\frac{4800}{4}
Divide both sides by 4.
x^{2}+\frac{200}{4}x=\frac{4800}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+50x=\frac{4800}{4}
Divide 200 by 4.
x^{2}+50x=1200
Divide 4800 by 4.
x^{2}+50x+25^{2}=1200+25^{2}
Divide 50, the coefficient of the x term, by 2 to get 25. Then add the square of 25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+50x+625=1200+625
Square 25.
x^{2}+50x+625=1825
Add 1200 to 625.
\left(x+25\right)^{2}=1825
Factor x^{2}+50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+25\right)^{2}}=\sqrt{1825}
Take the square root of both sides of the equation.
x+25=5\sqrt{73} x+25=-5\sqrt{73}
Simplify.
x=5\sqrt{73}-25 x=-5\sqrt{73}-25
Subtract 25 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}