Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x\times \frac{3}{4}x=24
Cancel out \pi on both sides.
2x^{2}\times \frac{3}{4}=24
Multiply x and x to get x^{2}.
\frac{2\times 3}{4}x^{2}=24
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}x^{2}=24
Multiply 2 and 3 to get 6.
\frac{3}{2}x^{2}=24
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x^{2}=24\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
x^{2}=\frac{24\times 2}{3}
Express 24\times \frac{2}{3} as a single fraction.
x^{2}=\frac{48}{3}
Multiply 24 and 2 to get 48.
x^{2}=16
Divide 48 by 3 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
2x\times \frac{3}{4}x=24
Cancel out \pi on both sides.
2x^{2}\times \frac{3}{4}=24
Multiply x and x to get x^{2}.
\frac{2\times 3}{4}x^{2}=24
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}x^{2}=24
Multiply 2 and 3 to get 6.
\frac{3}{2}x^{2}=24
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{2}\left(-24\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{2}\left(-24\right)}}{2\times \frac{3}{2}}
Square 0.
x=\frac{0±\sqrt{-6\left(-24\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{0±\sqrt{144}}{2\times \frac{3}{2}}
Multiply -6 times -24.
x=\frac{0±12}{2\times \frac{3}{2}}
Take the square root of 144.
x=\frac{0±12}{3}
Multiply 2 times \frac{3}{2}.
x=4
Now solve the equation x=\frac{0±12}{3} when ± is plus. Divide 12 by 3.
x=-4
Now solve the equation x=\frac{0±12}{3} when ± is minus. Divide -12 by 3.
x=4 x=-4
The equation is now solved.