Evaluate
\frac{1584}{7}\approx 226.285714286
Factor
\frac{11 \cdot 2 ^ {4} \cdot 3 ^ {2}}{7} = 226\frac{2}{7} = 226.28571428571428
Share
Copied to clipboard
\frac{2\times 22}{7}\times 3\times 10.5+\frac{22}{7}\times 3^{2}
Express 2\times \frac{22}{7} as a single fraction.
\frac{44}{7}\times 3\times 10.5+\frac{22}{7}\times 3^{2}
Multiply 2 and 22 to get 44.
\frac{44\times 3}{7}\times 10.5+\frac{22}{7}\times 3^{2}
Express \frac{44}{7}\times 3 as a single fraction.
\frac{132}{7}\times 10.5+\frac{22}{7}\times 3^{2}
Multiply 44 and 3 to get 132.
\frac{132}{7}\times \frac{21}{2}+\frac{22}{7}\times 3^{2}
Convert decimal number 10.5 to fraction \frac{105}{10}. Reduce the fraction \frac{105}{10} to lowest terms by extracting and canceling out 5.
\frac{132\times 21}{7\times 2}+\frac{22}{7}\times 3^{2}
Multiply \frac{132}{7} times \frac{21}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2772}{14}+\frac{22}{7}\times 3^{2}
Do the multiplications in the fraction \frac{132\times 21}{7\times 2}.
198+\frac{22}{7}\times 3^{2}
Divide 2772 by 14 to get 198.
198+\frac{22}{7}\times 9
Calculate 3 to the power of 2 and get 9.
198+\frac{22\times 9}{7}
Express \frac{22}{7}\times 9 as a single fraction.
198+\frac{198}{7}
Multiply 22 and 9 to get 198.
\frac{1386}{7}+\frac{198}{7}
Convert 198 to fraction \frac{1386}{7}.
\frac{1386+198}{7}
Since \frac{1386}{7} and \frac{198}{7} have the same denominator, add them by adding their numerators.
\frac{1584}{7}
Add 1386 and 198 to get 1584.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}