Evaluate
\sqrt{5}+1\approx 3.236067977
Factor
\sqrt{5} + 1 = 3.236067977
Share
Copied to clipboard
2\times \frac{2\left(-1-\sqrt{5}\right)}{\left(-1+\sqrt{5}\right)\left(-1-\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{-1+\sqrt{5}} by multiplying numerator and denominator by -1-\sqrt{5}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{\left(-1\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(-1+\sqrt{5}\right)\left(-1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{1-5}
Square -1. Square \sqrt{5}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
2\left(-\frac{1}{2}\right)\left(-1-\sqrt{5}\right)
Divide 2\left(-1-\sqrt{5}\right) by -4 to get -\frac{1}{2}\left(-1-\sqrt{5}\right).
2\left(-\frac{1}{2}\left(-1\right)-\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Use the distributive property to multiply -\frac{1}{2} by -1-\sqrt{5}.
2\left(\frac{1}{2}-\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
2\left(\frac{1}{2}+\frac{1}{2}\sqrt{5}\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
2\times \frac{1}{2}+2\times \frac{1}{2}\sqrt{5}
Use the distributive property to multiply 2 by \frac{1}{2}+\frac{1}{2}\sqrt{5}.
1+2\times \frac{1}{2}\sqrt{5}
Cancel out 2 and 2.
1+\sqrt{5}
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}