Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2\times \frac{2\left(-1-\sqrt{5}\right)}{\left(-1+\sqrt{5}\right)\left(-1-\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{-1+\sqrt{5}} by multiplying numerator and denominator by -1-\sqrt{5}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{\left(-1\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(-1+\sqrt{5}\right)\left(-1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{1-5}
Square -1. Square \sqrt{5}.
2\times \frac{2\left(-1-\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
2\left(-\frac{1}{2}\right)\left(-1-\sqrt{5}\right)
Divide 2\left(-1-\sqrt{5}\right) by -4 to get -\frac{1}{2}\left(-1-\sqrt{5}\right).
2\left(-\frac{1}{2}\left(-1\right)-\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Use the distributive property to multiply -\frac{1}{2} by -1-\sqrt{5}.
2\left(\frac{1}{2}-\frac{1}{2}\left(-1\right)\sqrt{5}\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
2\left(\frac{1}{2}+\frac{1}{2}\sqrt{5}\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
2\times \frac{1}{2}+2\times \frac{1}{2}\sqrt{5}
Use the distributive property to multiply 2 by \frac{1}{2}+\frac{1}{2}\sqrt{5}.
1+2\times \frac{1}{2}\sqrt{5}
Cancel out 2 and 2.
1+\sqrt{5}
Cancel out 2 and 2.