Evaluate
\sqrt{3}-1\approx 0.732050808
Factor
\sqrt{3} - 1 = 0.732050808
Share
Copied to clipboard
2\times \frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
2\times \frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\left(\sqrt{3}+1\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{3}+1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\times \frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\left(\sqrt{3}+1\right)\sqrt{2}}{2\times 2}}
The square of \sqrt{2} is 2.
2\times \frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\left(\sqrt{3}+1\right)\sqrt{2}}{4}}
Multiply 2 and 2 to get 4.
2\times \frac{\sqrt{2}\times 4}{2\times 2\left(\sqrt{3}+1\right)\sqrt{2}}
Divide \frac{\sqrt{2}}{2\times 2} by \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{4} by multiplying \frac{\sqrt{2}}{2\times 2} by the reciprocal of \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{4}.
2\times \frac{1}{\sqrt{3}+1}
Cancel out 2\times 2\sqrt{2} in both numerator and denominator.
2\times \frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
2\times \frac{\sqrt{3}-1}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\sqrt{3}-1}{3-1}
Square \sqrt{3}. Square 1.
2\times \frac{\sqrt{3}-1}{2}
Subtract 1 from 3 to get 2.
\sqrt{3}-1
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}