Evaluate
2
Share
Copied to clipboard
2\times 1^{2}+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Get the value of \tan(45) from trigonometric values table.
2\times 1+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Calculate 1 to the power of 2 and get 1.
2+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Multiply 2 and 1 to get 2.
2+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\sin(60)\right)^{2}
Get the value of \cos(30) from trigonometric values table.
2+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2^{2}}{2^{2}}.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
Since \frac{2\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}-3}{4}
Since \frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2^{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{8+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Calculate 2 to the power of 3 and get 8.
\frac{8+3}{2^{2}}-\frac{3}{4}
The square of \sqrt{3} is 3.
\frac{11}{2^{2}}-\frac{3}{4}
Add 8 and 3 to get 11.
\frac{11}{4}-\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
2
Subtract \frac{3}{4} from \frac{11}{4} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}