Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{6}\left(2\sqrt{3}-2\sqrt{2}\right)-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{3}\sqrt{6}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Use the distributive property to multiply 2\sqrt{6} by 2\sqrt{3}-2\sqrt{2}.
4\sqrt{3}\sqrt{3}\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4\times 3\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply 4 and 3 to get 12.
12\sqrt{2}-4\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
12\sqrt{2}-4\times 2\sqrt{3}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
12\sqrt{2}-8\sqrt{3}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply -4 and 2 to get -8.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}}{\sqrt{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}\sqrt{2}}{2}\left(2\sqrt{27}-\sqrt{12}\right)
The square of \sqrt{2} is 2.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(2\sqrt{27}-\sqrt{12}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(2\times 3\sqrt{3}-\sqrt{12}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(6\sqrt{3}-\sqrt{12}\right)
Multiply 2 and 3 to get 6.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(6\sqrt{3}-2\sqrt{3}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\times 4\sqrt{3}
Combine 6\sqrt{3} and -2\sqrt{3} to get 4\sqrt{3}.
12\sqrt{2}-8\sqrt{3}-2\sqrt{6}\sqrt{3}
Cancel out 2, the greatest common factor in 4 and 2.
12\sqrt{2}-8\sqrt{3}-2\sqrt{3}\sqrt{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
12\sqrt{2}-8\sqrt{3}-2\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{2}-8\sqrt{3}-6\sqrt{2}
Multiply 2 and 3 to get 6.
6\sqrt{2}-8\sqrt{3}
Combine 12\sqrt{2} and -6\sqrt{2} to get 6\sqrt{2}.