Evaluate
2\sqrt{3}\left(\sqrt{6}-4\right)\approx -5.371125086
Share
Copied to clipboard
2\sqrt{6}\left(2\sqrt{3}-2\sqrt{2}\right)-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{3}\sqrt{6}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Use the distributive property to multiply 2\sqrt{6} by 2\sqrt{3}-2\sqrt{2}.
4\sqrt{3}\sqrt{3}\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4\times 3\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{2}-4\sqrt{6}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply 4 and 3 to get 12.
12\sqrt{2}-4\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
12\sqrt{2}-4\times 2\sqrt{3}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
12\sqrt{2}-8\sqrt{3}-\sqrt{\frac{3}{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Multiply -4 and 2 to get -8.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}}{\sqrt{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\left(2\sqrt{27}-\sqrt{12}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{3}\sqrt{2}}{2}\left(2\sqrt{27}-\sqrt{12}\right)
The square of \sqrt{2} is 2.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(2\sqrt{27}-\sqrt{12}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(2\times 3\sqrt{3}-\sqrt{12}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(6\sqrt{3}-\sqrt{12}\right)
Multiply 2 and 3 to get 6.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\left(6\sqrt{3}-2\sqrt{3}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
12\sqrt{2}-8\sqrt{3}-\frac{\sqrt{6}}{2}\times 4\sqrt{3}
Combine 6\sqrt{3} and -2\sqrt{3} to get 4\sqrt{3}.
12\sqrt{2}-8\sqrt{3}-2\sqrt{6}\sqrt{3}
Cancel out 2, the greatest common factor in 4 and 2.
12\sqrt{2}-8\sqrt{3}-2\sqrt{3}\sqrt{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
12\sqrt{2}-8\sqrt{3}-2\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{2}-8\sqrt{3}-6\sqrt{2}
Multiply 2 and 3 to get 6.
6\sqrt{2}-8\sqrt{3}
Combine 12\sqrt{2} and -6\sqrt{2} to get 6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}