Evaluate
\sqrt{5}\approx 2.236067977
Share
Copied to clipboard
2\sqrt{5}+\frac{\frac{4\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{\sqrt{\frac{2}{15}}}-\sqrt{45}
Rationalize the denominator of \frac{4}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
2\sqrt{5}+\frac{\frac{4\sqrt{6}}{6}}{\sqrt{\frac{2}{15}}}-\sqrt{45}
The square of \sqrt{6} is 6.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}}{\sqrt{\frac{2}{15}}}-\sqrt{45}
Divide 4\sqrt{6} by 6 to get \frac{2}{3}\sqrt{6}.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}}{\frac{\sqrt{2}}{\sqrt{15}}}-\sqrt{45}
Rewrite the square root of the division \sqrt{\frac{2}{15}} as the division of square roots \frac{\sqrt{2}}{\sqrt{15}}.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}}{\frac{\sqrt{2}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}}-\sqrt{45}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}}{\frac{\sqrt{2}\sqrt{15}}{15}}-\sqrt{45}
The square of \sqrt{15} is 15.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}}{\frac{\sqrt{30}}{15}}-\sqrt{45}
To multiply \sqrt{2} and \sqrt{15}, multiply the numbers under the square root.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}\times 15}{\sqrt{30}}-\sqrt{45}
Divide \frac{2}{3}\sqrt{6} by \frac{\sqrt{30}}{15} by multiplying \frac{2}{3}\sqrt{6} by the reciprocal of \frac{\sqrt{30}}{15}.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}\times 15\sqrt{30}}{\left(\sqrt{30}\right)^{2}}-\sqrt{45}
Rationalize the denominator of \frac{\frac{2}{3}\sqrt{6}\times 15}{\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
2\sqrt{5}+\frac{\frac{2}{3}\sqrt{6}\times 15\sqrt{30}}{30}-\sqrt{45}
The square of \sqrt{30} is 30.
2\sqrt{5}+\frac{\frac{2\times 15}{3}\sqrt{6}\sqrt{30}}{30}-\sqrt{45}
Express \frac{2}{3}\times 15 as a single fraction.
2\sqrt{5}+\frac{\frac{30}{3}\sqrt{6}\sqrt{30}}{30}-\sqrt{45}
Multiply 2 and 15 to get 30.
2\sqrt{5}+\frac{10\sqrt{6}\sqrt{30}}{30}-\sqrt{45}
Divide 30 by 3 to get 10.
2\sqrt{5}+\frac{10\sqrt{6}\sqrt{6}\sqrt{5}}{30}-\sqrt{45}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
2\sqrt{5}+\frac{10\times 6\sqrt{5}}{30}-\sqrt{45}
Multiply \sqrt{6} and \sqrt{6} to get 6.
2\sqrt{5}+\frac{60\sqrt{5}}{30}-\sqrt{45}
Multiply 10 and 6 to get 60.
2\sqrt{5}+2\sqrt{5}-\sqrt{45}
Divide 60\sqrt{5} by 30 to get 2\sqrt{5}.
4\sqrt{5}-\sqrt{45}
Combine 2\sqrt{5} and 2\sqrt{5} to get 4\sqrt{5}.
4\sqrt{5}-3\sqrt{5}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\sqrt{5}
Combine 4\sqrt{5} and -3\sqrt{5} to get \sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}