Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 3\sqrt{3}-\frac{7\sqrt{5}}{\sqrt{15}}+\sqrt{108}-\frac{\sqrt{75}}{3}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
6\sqrt{3}-\frac{7\sqrt{5}}{\sqrt{15}}+\sqrt{108}-\frac{\sqrt{75}}{3}
Multiply 2 and 3 to get 6.
6\sqrt{3}-\frac{7\sqrt{5}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\sqrt{108}-\frac{\sqrt{75}}{3}
Rationalize the denominator of \frac{7\sqrt{5}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
6\sqrt{3}-\frac{7\sqrt{5}\sqrt{15}}{15}+\sqrt{108}-\frac{\sqrt{75}}{3}
The square of \sqrt{15} is 15.
6\sqrt{3}-\frac{7\sqrt{5}\sqrt{5}\sqrt{3}}{15}+\sqrt{108}-\frac{\sqrt{75}}{3}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
6\sqrt{3}-\frac{7\times 5\sqrt{3}}{15}+\sqrt{108}-\frac{\sqrt{75}}{3}
Multiply \sqrt{5} and \sqrt{5} to get 5.
6\sqrt{3}-\frac{35\sqrt{3}}{15}+\sqrt{108}-\frac{\sqrt{75}}{3}
Multiply 7 and 5 to get 35.
6\sqrt{3}-\frac{7}{3}\sqrt{3}+\sqrt{108}-\frac{\sqrt{75}}{3}
Divide 35\sqrt{3} by 15 to get \frac{7}{3}\sqrt{3}.
6\sqrt{3}-\frac{7}{3}\sqrt{3}+6\sqrt{3}-\frac{\sqrt{75}}{3}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
12\sqrt{3}-\frac{7}{3}\sqrt{3}-\frac{\sqrt{75}}{3}
Combine 6\sqrt{3} and 6\sqrt{3} to get 12\sqrt{3}.
12\sqrt{3}-\frac{7}{3}\sqrt{3}-\frac{5\sqrt{3}}{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{31}{3}\sqrt{3}-\frac{7}{3}\sqrt{3}
Combine 12\sqrt{3} and -\frac{5\sqrt{3}}{3} to get \frac{31}{3}\sqrt{3}.
8\sqrt{3}
Combine \frac{31}{3}\sqrt{3} and -\frac{7}{3}\sqrt{3} to get 8\sqrt{3}.